以下内容来自reimu主题作者D-Sketon
你可以在以上内容找到本文原始来源及原始代码,本文置于本博客仅为提供作者编写时样式参考
Markdown 基本元素
标题
H1
H2
H3
H4
H5
H6
强调
Emphasis, aka italics, with asterisks or underscores.
Strong emphasis, aka bold, with asterisks or underscores.
Combined emphasis with asterisks and underscores.
Strikethrough uses two tildes. Scratch this.
列表
Definition List (dl)
- Definition List Title
- This is a definition list division.
Ordered List (ol)
- List Item 1
- List Item 2
- List Item 3
Unordered List (ul)
- List Item 1
- List Item 2
- List Item 3
段落
Lorem ipsum dolor sit amet, test link consectetur adipiscing elit. Strong text pellentesque ligula commodo viverra vehicula. Italic text at ullamcorper enim. Morbi a euismod nibh. Underline text non elit nisl. Deleted text tristique, sem id condimentum tempus, metus lectus venenatis mauris, sit amet semper lorem felis a eros. Fusce egestas nibh at sagittis auctor. Sed ultricies ac arcu quis molestie. Donec dapibus nunc in nibh egestas, vitae volutpat sem iaculis. Curabitur sem tellus, elementum nec quam id, fermentum laoreet mi. Ut mollis ullamcorper turpis, vitae facilisis velit ultricies sit amet. Etiam laoreet dui odio, id tempus justo tincidunt id. Phasellus scelerisque nunc sed nunc ultricies accumsan.
Interdum et malesuada fames ac ante ipsum primis in faucibus. Sed erat diam
, blandit eget felis aliquam, rhoncus varius urna. Donec tellus sapien, sodales eget ante vitae, feugiat ullamcorper urna. Praesent auctor dui vitae dapibus eleifend. Proin viverra mollis neque, ut ullamcorper elit posuere eget.
This is a very long line that will still be quoted properly when it wraps. Oh boy let’s keep writing to make sure this is long enough to actually wrap for everyone. Oh, you can put Markdown into a blockquote.
Maecenas ornare arcu at mi suscipit, non molestie tortor ultrices. Aenean convallis, diam et congue ultricies, erat magna tincidunt orci, pulvinar posuere mi sapien ac magna. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Praesent vitae placerat mauris. Nullam laoreet ante posuere tortor blandit auctor. Sed id ligula volutpat leo consequat placerat. Mauris fermentum dolor sed augue malesuada sollicitudin. Vivamus ultrices nunc felis, quis viverra orci eleifend ut. Donec et quam id urna cursus posuere. Donec elementum scelerisque laoreet.
表格
Table Header 1 | Table Header 2 | Table Header 3 |
---|---|---|
Division 1 | Division 2 | Division 3 |
Division 1 | Division 2 | Division 3 |
Division 1 | Division 2 | Division 3 |
Markdown | Less | Pretty |
---|---|---|
Still | renders |
nicely |
1 | 2 | 3 |
其他元素 - abbr, acronym, sub, sup, kbd, etc.
Lorem superscript dolor subscript amet, consectetuer adipiscing elit. Nullam dignissim convallis est. Quisque aliquam. cite. Nunc iaculis suscipit dui. Nam sit amet sem. Aliquam libero nisi, imperdiet at, tincidunt nec, gravida vehicula, nisl. Praesent mattis, massa quis luctus fermentum, turpis mi volutpat justo, eu volutpat enim diam eget metus. Maecenas ornare tortor. Donec sed tellus eget sapien fringilla nonummy. NBA Mauris a ante. Suspendisse quam sem, consequat at, commodo vitae, feugiat in, nunc. Morbi imperdiet augue quis tellus. AVE. Use Crtl + C to stop.
图片
分隔线
代码块
1 | Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. |
1 |
|
1 | [ |
1 |
|
1 |
|
1 | function $initHighlight(block, cls) { |
1 |
|
1 | CREATE TABLE "topic" ( |
1 |
|
1 | /** |
1 | import Foundation |
1 | @font-face { |
1 | # The Greeter class |
1 | # Makefile |
1 | package main |
1 |
|
1 | ; boilerplate |
标签插件
引用块
Do not just seek happiness for yourself. Seek happiness for all. Through kindness. Through mercy.
Every interaction is both precious and an opportunity to delight.
代码块
带有标题和 URL
1 | .compact([0, 1, false, 2, ‘’, 3]); |
带有选中行
1 | const http = require('http'); |
Pull Quote
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas tempus molestie arcu, et fringilla mauris placerat ac. Nullam luctus bibendum risus. Ut cursus sed ipsum feugiat egestas. Suspendisse elementum, velit eu consequat consequat, augue lorem dapibus libero, eget pulvinar dolor est sit amet nulla. Suspendisse a porta tortor, et posuere mi. Pellentesque ultricies, mi quis volutpat malesuada, erat felis vulputate nisl, ac congue ante tortor ut ante. Proin aliquam sem vel mauris tincidunt, eget scelerisque tortor euismod. Nulla tincidunt enim nec commodo dictum. Mauris id sapien et orci gravida luctus id ut dui. In vel vulputate odio. Duis vel turpis molestie, scelerisque enim eu, lobortis eros. Cras at ipsum gravida, sagittis ante vel, viverra tellus. Nunc mauris turpis, elementum ullamcorper nisl pretium, ultrices cursus justo. Mauris porttitor commodo eros, ac ornare orci interdum in. Cras fermentum cursus leo sed mattis. In dignissim lorem sem, sit amet elementum mauris venenatis ac.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed ligula justo, lobortis sit amet semper vel, dignissim sit amet libero. Praesent ac tempus ligula. Maecenas at gravida odio. Etiam tristique volutpat lacus eu faucibus. Donec non tempus arcu. Phasellus adipiscing, mauris nec mollis egestas, ipsum nunc auctor velit, et rhoncus lorem ipsum at ante. Praesent et sem in velit volutpat auctor. Duis vel mauris nulla. Maecenas mattis interdum ante, quis sagittis nibh cursus et. Nulla facilisi. Morbi convallis gravida tortor, ut fermentum enim gravida et. Nunc vel dictum nisl, non ultrices libero. Proin vestibulum felis eget orci consectetur lobortis. Vestibulum augue nulla, iaculis vitae augue vehicula, dignissim ultrices libero. Sed imperdiet urna et quam ultrices tincidunt nec ac magna. Etiam vel pharetra elit.
数学公式
$f(n) = \Theta(g(n)) \land g(n) = \Theta(h(n)) \rightarrow f(n) = \Theta(h(n))$
$\omega(g(n))={f(n):\text{存在正常量}c\text{和}n_0\text{,使得对所有}n \geq n_0\text{,有}0\leq cg(n) < f(n)}$
$$
f^{(i)}(n) =
\begin{cases}
n \qquad & i = 1 \
f(f^{(i-1)}(n)) \qquad & i>1
\end{cases}
$$
$$
A = \begin{bmatrix}
A_{11} & A_{12} \
A_{21} & A_{22}
\end{bmatrix}
,
B = \begin{bmatrix}
B_{11} & B_{12} \
B_{21} & B_{22}
\end{bmatrix}
,
C = \begin{bmatrix}
C_{11} & C_{12} \
C_{21} & C_{22}
\end{bmatrix}
$$
$$\sum^{\lfloor lgn \rfloor}{h=0} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O(n \sum^{\lfloor lgn \rfloor}{h=0} \frac{h}{2^h}) = O(n \sum^{\infty}_{h=0} \frac{h}{2^h}) =O(n)$$
$$
\begin{align}
&\underset{\boldsymbol{w}}{\min}\sum_{i=1}^N{\left( \boldsymbol{p}_i\boldsymbol{w} \right) ^2 },,, s.t. ,\left| \boldsymbol{w} \right| _2=1 \notag
\
\Rightarrow &\underset{\boldsymbol{w}}{\min},,\boldsymbol{w}^T\boldsymbol{P}^T\boldsymbol{Pw},,, s.t., \boldsymbol{w}^T\boldsymbol{w}=1
\end{align}
$$
流程图
sequenceDiagram participant 客户端 participant 代理对象 participant 代理处理器 participant 目标对象 客户端->>代理对象:调用方法 代理对象->>代理处理器:转发代理处理器
Invoke()方法 代理处理器->>目标对象:判断Method
调用目标对象的方法 目标对象->>代理处理器:返回结果 代理处理器->>代理对象:返回结果 代理对象->>客户端:返回结果
graph LR c1[Client1
Socket]--客户端发出连接-->ss[ServerSocket] c2[Client2
Socket]--客户端发出连接-->ss[ServerSocket] ss--服务器接受请求并创建新的Socket-->s1[为Client1创
建的Socket] ss--服务器接受请求并创建新的Socket-->s2[为Client2创
建的Socket] c1--两个Socket间建立专线连接-->s1 c2--两个Socket间建立专线连接-->s2